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Abstract—This paper presents a unified formulation of the various singular integral equations
used in the boundary element methods (BEM) for the solution of linear, quasi-static, anisotropic
poroelasticity. In particular, a derivation is provided that connects the *‘direct method™ with the
“indirect methods”. The presentation begins with an alternative derivative of the time and space
dependent reciprocal integral. The Somigliana-type integral equations for the direct BEM are first
constructed. By summing integral equations representing an interior and an exterior domain prob-
lem, the Somigliana (displacement discontinuity) and Volterra (stress discontinuity) type dislocation
equations for indirect BEM are obtained. An extension to the edge dislocation method is discussed.
These stress and displacement discontinuity equations are then combined to construct a symmetric
Galerkin integral equation system. Through such construction, many intriguing connections among
Green’s functions of fluid source, dipole, dilatation, fluid body force, total body force, and dis-
placement discontinuity are revealed. Finally, a complete compilation of fundamental solutions for
the isotropic case is provided. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In the boundary element method (BEM) literature, two types of integral equation rep-
resentations are referred to: a “direct method” and an “indirect method” (Jaswon and
Symm, 1977 ; Banerjee and Butterfield, 1981 ; Brebbia ez al., 1984). In a direct method, the
integral equations are derived from a Green’s second identity, or a reciprocity of work
principle. The parameters in the integral expressions are ‘‘physical” quantities, such as
potential, flux, displacement, stress. In contrast, an “indirect method” is based on dis-
tributing singular solutions at “fictitious” densities. After solving for the densities, a second
application of the integral equations restores the desirable physical quantities. In yet another
approach, integral equations are assembled following physical arguments; for example,
singularities that simulate the opening of a fracture in an elastic solid (Crouch and Starfield,
1983) or fluid extraction from a fracture in a porous medium (Gringarten et al., 1974) are
distributed at magnitudes that represent crack opening displacement or fluid extraction
rate.

The theoretical links between the direct and the indirect boundary integral equations
for the Laplace (Jaswon and Symm, 1977 ; Brebbia and Butterfield, 1978), diffusion (Baner-
jee et al., 1981) and elasticity operators (Jaswon and Symm, 1977 ; Altiero and Gavazza,
1980) are well known. The so-called fictitious densities are associated with jumps between
the solutions of an exterior and an interior domain problem under the same set of boundary
conditions. A theoretical connection also exists among the dislocation, the displacement
discontinuity, and other types of integral equation methods (Mura, 1982 ; Hong and Chen,
1988).

The present paper focuses on the coupled theory of linear, quasi-static poroelasticity
(Biot, 1941, 1955; Rice and Cleary, 1976 ; Detournay and Cheng, 1993 ; Coussy, 1995).
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Boundary element methods have been formulated for the direct method (Cheng and Liggett,
1984a; Cheng and Predeleanu, 1987; Nishimura and Kobayashi, 1989; Dargush and
Banerjee, 1989, 1991), the displacement discontinuity method (Detournay and Cheng,
1987), and the stress discontinuity method (Carvalho, 1990). A symmetric Galerkin integral
equation system has also recently been constructed by Pan and Maier (1997). Following
the links that have been established in elasticity and potential theory, the connections
between some of the integral equations have been demonstrated (Cheng et al., 1990 ; Pan,
1991).

In this paper, a comprehensive presentation that unifies all the integral equation
formulations is provided. We begin with an alternative derivation that leads to the reci-
procity integral equations without invoking an adjoint system of equations as needed in
the conventional derivation. Somigliana-type integral equations are created by using point
force and point fluid dilatation Green’s functions. These equations form the foundation of
the direct BEM. Indirect integral equations are then obtained by adding the direct integral
equations for the interior and the complementary exterior domain problem. Depending on
the assumed jump and continuity conditions at the boundary between the interior and the
exterior domain, two kinds of dislocation equations are derived : a Somigliana-type and a
Volterra-type. In engineering terminology, they are, respectively, referred to as displacement
and stress discontinuity method. Also, the equivalent of the dislocation method widely
used to solve elastic fracture mechanics problems is derived. By combining the stress and
displacement discontinuity integral equations, a symmetric Galerkin integral equation
system is then obtained. The relations among the integral equations shed light into the
various connections among Green’s functions. Finally, a complete listing of the Green’s
functions appearing in the integral equations is provided in closed-form in an Appendix,
for the isotropic case.

2. GOVERNING DIFFERENTIAL EQUATIONS

The governing equations of linear, quasi-static poroelasticity can be expressed as
follows (Biot, 1955; Coussy, 1995; Cheng, 1997):

constitutive relations

G, = Mey—a,p (1)
p = M({—wey 2
equilibrium equations
oy, = —F 3)
Darcy’s law
g = —ky(p;—f) 4
continuity equation
% T4 =7 )

In the above, g, is the total stress tensor, p the pore pressure, e; the strain tensor defined
ase; = %(u,; ;+u;,;), with u; the solid displacement vector, { the variation of fluid content per
unit volume of porous material, g, the specific discharge vector, M, the drained elastic
modulus tensor, a; the Biot stress coefficients tensor, M the Biot modulus, the per-
meability tensor, F, the total or bulk body force, f; the fluid body force, and y the fluid
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source. We note the symmetry of the following material coefficients which is essential for
deriving some of the relations below :

My =My, = My = My, ©®
Oty = Oy, @
Ky = Ky ®

For later use, we also define the following two quantities: a fluid relative displacement
vector,

0

and the volume of injected fluid due to a source v,

0= J'vdz (10)

0

3. RECIPROCITY RELATION

Using the constitutive equations, (1) and (2), and the symmetry of the material
coefficients, (6) and (7), it can be shown that the following reciprocity of work principle
exists :

1) (2 )72 2) (1 2)p(l
O.l(j)el(j)+p( )C( ) — ng)egj)_i_p( )C( ) (“)

where superscripts (1) and (2) denote quantities under two independent stress and strain
states at different spatial and time coordinates. For the present purpose, the following form
is taken:

o (x. e (x—x, t—1)+p (o, DIV (x — %, 1—1)
=P —x, =D, D +pP (1 —x, =) (12)

This special form allows an alternative derivation of the reciprocal integral equation (see
Appendix A), without invoking an adjoint system of equation as in the traditional
procedure. Integrating (12) over the solution domain and time, and applying the divergence
theorem, yields the reciprocal integral equation (see Appendix A)

4

!
2 2 1 1 2 2 1
f f (0P nu® —oPnul") dxdr—f f(p( 0P, —pPuVn) dy de
o Jr 0JT

rer

+ (F§'>u,<2>—Ff-“uf-“)dxdwf

JoJa 0

l

j (/6@ —fPu() dy de
Q

rt

— i (Q(l)p(2)_Q(2)p(l)) dXdH‘J
Q

JoJ 0

t

J (ED6® — ED i) dy de
Q

rrr

+| | (PP —pPLE)dydr =0 a3

v0 JQ

in which T is the bounding surface of the domain Q, and »; the component of the unit



4524 A. H.-D. Cheng and E. Detournay

outward normal to I'. A new quantity £, a nucleus of strain, has been introduced to keep
track of the displacement discontinuity solution (see Appendix A). Integral equations
similar to (13) were initially derived by Predeleanu (1968) and Cleary (1977). However, the
above form which explicitly keeps track of the total and fluid forces, and fluid volume
injection, was first presented by Cheng and Predeleanu (1987). The reciprocal integral eqn
(13) has further incorporated the nucleus of strain £, whose usefulness will become evident
later. These terms provide the pathway for the creation of the various integral equation
representations as demonstrated below.

4. DIRECT METHOD

To obtain singular integral equations of Somigliana type, the following substitutions,
respectively, corresponding to an instantaneous point total force in the x,-direction, an
instantaneous point fluid force in the x,-direction, an instantaneous fluid volume dilatation,
and an instantaneous displacement discontinuity, are made

FP = 5,0(1—x)3(t —1) (14)

Ji@ = 0ud(x—x)o(1—1) (15)

Q® = (x—x)8(t—1) (16)

ER) = —3(046,+0,0,)8(x—X)8(t—1) (17

where §, is the Kronecker delta, and () the Dirac delta function with singularity located
at point x and time 7, respectively. The expanded indices for the body forces F; and £, and
nucleus of strain E;, means that multiple substitutions, k,/ = 1,2 for 2-D and 1, 2, 3 for 3-
D, are made, such that multiple integral equations are generated. The above substitutions

yield

3

ﬁuk(xs t) = j\

0

J (i ( — X, 1= D)o, (3, O, () — oL (o — X, t — O (u(y, )] dy de
r

— J l J E(x—x, t—1)p(x. Dn,(x) — pi' (X — X, t =)o (¥, ()] dx dr

0

+J’ J [l (¢ — X, =D F; (3, T) + vk (g — X, t—7) fi()t, T)
o

0

—pl (=%, 1—0Q(y, D] dy dz +J f pE(x—x.1=){(x.0) dy dr (1)
Q

0

t

ﬁvk(x’ t) = J

0

J (=, t— 1), (0, D () — (i — X, 1= D) (Mu(x. D] dy de
r

- j [ [ —x, t —Dp( D) — Pl —x, t =)oy, D (x)] dy dt
r

0

+ J J (i —%, 1 —T)F(y, T) + Vi (=X, = 1) fi(%, T)
Q

0

4

—pir—x,1—1)Q(y, )] dx dt +j

0

fpf(x—xsf—f)C(x,O)dxdT (19)
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L

0

—pp(x,1) = f j [ (o — %, t —1)0,;(, DI, (A) — ol — X, 1 —Dn;(us(x, ©)] dy dz
r

—J J [ (=X, t—Om()p(t, ©) — P (x — X, t— D)%, Dn(x)] dy de

0

+ jl J [Uf'(X —X, - T)E(X’ T) + U:"i(X —X, - T)ﬁ(Xs I.)

0

r

0

—p"(—x,t—1)Q(x, V)] dy dr +J f Pa—x,1—=0){(x, 0)dy dr (20)
Q

t

= Bou(x, 1) = J

0

f [ (4 — X, 1 — 1), (x, I, (X) — 0 (4 — X, t — ;P u (. )] dy dt
T

—j J [t —x, t—)p(x, Ony) — pis( — X, 1 — 1o, ()] dx dt

0

+ J’ f [ Ot — %, t =D F,(x, 1) +vits (o — X, t—7) fi(x, T)

0

t

P —%, =00 Dl dxdr  + J

0

J PG —x, t—1){(%, 0) dy dr 21
Q

in which we have set E{}’ = 0 by not considering its physical presence, yet have retained
total and fluid body forces, and fluid source. In the above equations, § is a constant of
geometry determined by a Cauchy principal value integration. f§ is equal to 0, 1 and 1/2,
respectively, when the ““base point” x is located outside, inside the domain Q, and on a
smooth part of the boundary I'. On a corner, § is proportional to the interior angle (2-D)
or interior solid angle (3-D). The quantities denoted by superscripts are free-space Green’s
functions governed by (A2), (A3), (3)-(5), (9) and (10), with the respective substitution of
the forcing terms shown in (14)—(17). The conventions for the superscripts used to denote
the various singular solutions ( force, source, continuous, instantaneous, etc.) are given in
Table 1. Figure 1 gives a graphic illustration of the sign convention of some of these
singularities. For the case of isotropy, a complete listing of these solutions in closed form
is compiled and given in Appendix D.

Equations (18)—(20) are not yet in a form suitable for a BEM implementation. Since
the physical conditions are hardly given in terms of fluid displacement v, and fluid injection
volume @, an integration by parts is performed to convert them into fluid discharge g,, and
source intensity 7, respectively. We can also carry out the time integration for terms
containing the initial distribution {(y,0). The following integration equations are obtained

Table 1. Convention for naming singular solutions

Singularity type Instantaneous Continuous
Total force (F)) Fi Fe
Fluid force (f) fi fe
Fluid source (y) si sc
Fluid dipole (y,) pi pc
Fluid dilatation (Q) li le
Displacement discontinuity di de

Edge dislocation el ec
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P> —P—
/* N

source y dipole Y,

y dyy
A ¢

< dy

b= d
d

yX

normal and shear
displacement
discontinuity

Fig. 1. Convention of singularities.

displacement
discontinuity tensor

t

Bu(x, 1) = j

0

J [ (x — X, 1 — )0 ,(%, TIn; (1) — 05 (o — X, £ — ) (u(x, 1)1 dy dt

- J l J lg% (x—x, t —D)n (P, ©) — P (4 — X, t—0)qi(x, Dn(x)] dy dz

0

+JJ [ (n— X, t—DF,(x. 1) + ok ({ — X, 1 — 1) fi(%, 7)

0

—pl (=%, 1= 1)y(x, D dy de —J (=080, 0) dx
Q

t

ﬁvk(x’ t) = J

0

J [ —x, =)o, On,(0) — ol (o — X, t —)m,(u;(x, 7)1 dy dz
r

- f f (g (ot —x, t—On,(p (X, T — pE (L —X, 1 =D g:(%, Dn(x)] dy de
r

0

+Jl J [ (o —%, =) F, (%, D) + Vi (x— X, t—1) i), T)
Q

0

—pfE (=%, t—1)y(x, 7)] dy dz —J pEGL—x, (%, 0) dy
Q

t

’“BP(X, t) = J\

0

J W (—x, t =)o, (%, O (x) — o — X, t—1)n, (0w (x, )] dy dt

— f J [qF (x—x, t—Dn, (P, 7) — P (X — X, t—D)gi(x, T)n(x)] dy de

0

(22)

(23)
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+ j J [ (¢ — %, 1 — D F(%, ©) + 0¥ — X, t— 1) (%, 7)
Q

0

—p (=X, 1—0)y(x, D] dy de ~f PO —x,0H¢(x, 0)dy (24)
Q

t

~ﬂa'kl(x5 t) =J

0

f [ (X — X, t =D, (%, D (X) — 0% (A~ X, t— D), (), (x, )] dy dt
r

- f Jr [g5: (X —x, = O)n, (VP (L. T) — P (4 — X, t— 1) gy, T)m(x)] dy de

0

+ J J [ (L =X, 1= D) F, (0, O + 05— X, 1~ 1) £, T)

0

— Pl —xX, t—1)y(y, 1)) dy dr —j Pl —x, ¢ (x, 0) dy (25)
Q

in which we have replaced some of the Green’s functions by equivalent quantities using the
following general formulae :

a(~) o
)iy == () (26)

ol = q{r, 27

Although not directly used here, we also introduce several relations for future use:

A~ .

AED (e (8)

(~)Ey =(~)E, (29)
v =g’ (30)

In the above, (~) is to be replaced by any of the Green’s function entities, such as u;;, 6,4,
etc. The superscript (¥) corresponds to a forcing function designation: F, £, s, etc. for the
first superscript, and i or ¢ for the second, and the ellipses (- -} in the subscript mean any
number of indices as needed.

The origin of (26) is obvious as an instantaneous forcing function is the time derivative
of a continuous one. Equation (28) is based on (10). However, rather than differentiate the
dilation influence functions, we differentiate the source expressions. This is because that
fluid dilatation influence functions, introduced by substituting Q by é{y —x)é(t — 1), are the
time derivatives of fluid source influence functions, associated with y = d(x—x)é(t—1).
Equation (29) is a consequence of both (26) and (28). The conversion between fluid
displacement and the specific flux terms as shown in (27) is based on the definition (9). The
last relation (30) is also evident from the various arguments above.

Although four integral equations are presented, only (22) and (24) are needed in a
BEM implementation for the solution of an initial/boundary problem. In a typical problem
for poroelasticity,

e either boundary tractions ¢, = 6,n,; or displacements u;, and
o cither fluid pressure p or normal flux ¢ = gn;
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are prescribed on a given part of the boundary. Equations (22) and (24) are enforced at a
set of boundary nodes, leading to a collocation procedure. Due to the transient nature of
the integral equations, the discretization takes place both in time and in space. Through a
time-stepping or convolutional integral process, the missing boundary data in terms of the
physical parameters of traction, displacement, pressure or flux are solved. We shall refrain
from discussing further details of numerical issues. Refer to Cheng and Detournay (1988),
Vandamme et al. (1989), Dargush and Banerjee (1989, 1991) for typical numerical
implementations.

To avoid the numerical handling of time integration, integral transforms are sometimes
utilized. For example, applying Laplace transformation to (22) and (24) and utilizing the
convolutional theorem, yields the following equations from which the time integrals have
been eliminated (Cheng and Liggett, 1984a; Cheng and Detournay, 1988 ; Badmus et al.,
1993)

it (x,s) = f [ ( — %, )83t ), () — G (U — X, $)m, (0 E(x, )] Ay,
r

»
~Fi

1 .
— | =% 900 s) — e (x—x, )d,(x, $)n: ()] dx

Jr

»

. - ) . 1
+ [Zk'(x —X, ) E(x, 8) + 05 (o —X, 8) fi), ) — ;ﬁf’(x-x, P, S)] dy

JQ

r

1.
- ;ﬁf’(x—x, 5){(x,0) dy €2

JQ

—Bp(x,s) = j sl (x — %, 8)8, (%, $)n; () — G0 — X, $)n; ()& (%, )] Ay

r

— | [FG—x, )m)F $) — P (X —X, 5)g, (X, $)m: ()] dx

”

+ | s — %, ) F (o, 5)+ 55— X, 9) [ (o ) — (ot — X, )7(x, )] dx

Q

n

—| Po—x,98(x,0)dx (32)

2

where the tilde indicates a Laplace transform, and s is the transform parameter. We note
that the Green’s functions are unified in such a way that only two types of singularities
appear : an instantaneous point force (F7) and an instantaneous point source (si). In doing
so, the following relations based on (26) and (28) are invoked :

(~)r = s~ (33)

(~)y =s(~)E, (34

We also notice the utilization of (29). Integral equations of similar nature can be derived
in the frequency domain or via Fourier transform (Cheng and Liu, 1986), and in terms of
a steadily moving coordinate system (Cheng and Liggett, 1984b).
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n

A

Ql

Fig. 2. Complementary regions bounded by a common surface.

5. INDIRECT METHOD

Consider a region Q bounded by I'. Its complementary region is denoted as Q’ as
depicted in Fig. 2. The unit outward normal n is associated with Q, n’ with Q’. Equations
(22)—(25) are now written for Q’, which is free from body forces and fluid sources

= j J (uiio}n;— agnu) dy de —J j (giinip’ —pi“qin}) dy dt —J plody  (3%)
r

oJr (v

f j( o) — afynju) dy df—f J(q{inw'-l)’ffq?n?) dx dr—j Pelody  (36)
0 0Jr [0

0 Q

ff(u”a’n’—a niu) dxdr—J J (ginyp’ p"q’n’)dxdr—f pdy (37
0 r

t t
0= J j (”?Z/O';jn} qkln/u,) dy df“f f (qulnzp —piiqin}) dy df—f sz‘:f) dx (38)
r r

] 0 o

where the prime is used to denote quantities associated with ’. We have retained the initial
condition {} in the above, for a reason that will become evident later. We also note that
n; = —n; as the outward normals of Q and Q" oppose each other. The left-hand sides of
(35)-(37) are zero because the base point is located in Q. Summing (35)—(37) with (22)-
(24), the following expressions are obtained

!

ﬁuk=” [ (0 — o), — o fin, (i — )] dXdT—J

0 0

j[q n(p—p")—pi‘(qi—qn] dy dr

f’f(uiﬂvi:f ot y)dxdr—f PEGdy (39)

0 Q+Q

fu, = jl J [ug((ﬂ'ij —oin;— O-{j;'knj(ui —up)]dydr— J J lgiin(p ~p’) —pi(gi—q)n] dydr

0yr
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0

+fjlﬁn+%n¢bnum—f Pilody  (40)
Q Q4+

'

~tp = [ | wtos=cipm—tmu—inagsc- |
T

0 0

f lgfn(p—p)—p“(g:—qIn] dy de
r

+ J J W' F +vlf,—pey)dydr— J
Q

0 Q+Q

,p’CCo dy (41)

—pou = J J- [uldlil(o-ij‘a;j)nj—oid;klnj(ui_uz/')] dyds
r

]

- J J lgénp—p)—pli(qi—q)n] dy dz
r

0

+fj(u?21F,-+v§izfi—pﬁ7v)dxdr— J pulody  (42)
R ,

0 Q+Q

These expressions form the basis of the integral equations presented below.

6. STRESS DISCONTINUITY METHOD

For a problem defined in Q, we can impose a complementary problem in Q' in which
the solid displacement and fluid normal flux along the boundary are identical to that of the
primary problem (i, = uj, g, = gin;). Equations (39)—(42) therefore, reduce to

Pu(x, 1) = ” [uii(x — o, t —7)5,(%, T) +gbs (X =, t —T)n, (o) s(x, )] dy dt
+j’ j [ug(x“x’ t—T)E(X, T) +UZ(X_xs t—T)fi(x’ T)
0 JQ
+ P (x—y, t—1)y(x, D] dx dr+f pex—y, 0l(x,0)dy  (43)
Q+Q
ﬁvk(x; t) = Jv J [uf,(x —X’ Z“T)si(xa ‘L') +ﬂf(X—X, t—‘c)ni(X)S(Xr ‘C)] dX d‘C
0Jr

+J.t f [ui(x — o, t=T)Fi(, D) +ofi(x =%, t—0) i, 7)
Q

0

+pE(x—x, t—1)y(x, 1)1 dx dr+f

Q4+

A= 0l 0)dx  (44)

ﬂp(xv t) = J‘z J [uﬁi(x - X, l*T)Sr(X, T) +q£c(x—'xa [——T)ni(X)s(x’ T)] dX d‘L’
0Jr

+” [ (X — 1, 1= D) F (o ) + (X — s 1= 0) (1 T)
Q

0

+pe(x—y, t—1)y(x, )] dy dr+ j ,p‘c(x - L0, 0dy  (45)

Q+Q
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4

Bou(x, 1) = J

0

f [ (x =%, t= D)5, ) +glli(x — o, 1= D) s, )] dy de

+f J (i (X — %, =D F,(%, ©) + v%(X— %, t — ) /i, 7)
Q

0

+pii (x—7, t=)y(x, D dx df+f P00, 00 dy (46)

Q+Q

where s; and s represent the traction and the pressure jumps across the boundary T,
respectively,

s = s;n; = (0, —op)n; CY))
s=—(p—p) (48)

and s;;is the stress discontinuity tensor. It may be argued that s,and s do not have a physical
meaning as the complementary problem is fictitious. Hence these quantities may be referred
to as “fictitious densities™.

Following the spirit of an indirect method, the roles of x and y in the Green’s functions
have been reversed in writing (43)—(46), as compared to (22)—(25). The singularities for the
indirect method are distributed along the integration contour y € T', while that for the direct
method is at a fixed point x. Consequently, the indices % have also been reversed to that
the integral representation of the k-component displacement u, is associated with the
distribution of k-component Green’s functions u; (since the second index of #’ denotes
the vector component of the forcing function). These adjustments are performed under the
following rules:

W —x,t—1) = —ti(x—%,1—1); ¢ HQ—X1t—1)= —q(x—y,t—1)
i —x,1—1) = —vf(x—y,1—1); p—x,1—1) =pi(x—y,1—1)

uP ' (A—x, =1 = ul)'(X— %4, 1—1); gRU—X,1—17) = g (x—x, 1—1)

=%, —1) = 0P (X— 1 —1); pL (=X, 1—1) = —p*(x—, 1—1)

U%(X*x,t—‘f) = _M%I(X-Xat_r); qgf/(X“X,l—T) = _q?{lsl(x—X7t—T)

v —X,1—7) = = (X— 2, 1—1); pE(x—X,1—1) = pi(x—y, t—1) (49)

in which the superscripts (*) are replaced by F or f. The sign change in the above expressions
is determined by the type of singularity and the order of spatial differentiation involved in
obtaining these quantities. We note that the indices for three of the displacement dis-
continuity quantities, u%,, g%, and v, are not switched, as symmetry does not exist between
the first and the third index.

Although (43)—(46) are mathematically correct, they are not yet in the form that is
most appealing to physical intuition. Indeed, to obtain displacement #, at a point x and a
time ¢ using (43), various influence function quantities, such as solid and fluid displacements,
pressure, and flux, are distributed. A more intuitive approach is to distribute only dis-
placement influence functions but created by various singularities, such as total and fluid
force, source, etc. A similar statement can be made for (44)—(46). Interestingly, as proven
in (26)—(30) and Appendix C, the following relations among Green’s functions exist

Fio_ . Fe I c __ i
ij 3 l’ij_u/;j7 pif=u; ql[j—l){},

pr=uv's wi=pl's q'=pl; vi=p
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le __ 80, di _ _Fi ., de _ ofi . di __ ofi
P =P, Ui = Ok Qi = Ok Vige = Opjis

piy = o) (50)

Hence (43)—(46) can be expressed as

ﬁuk(xv t) = J\ J [uﬂ(x_xs t—T)Si(X7 T) + kii(X —% t_r)ni(x)s(X7 T)] d'X dr

0

+J‘ j [”g(X—X,Z—T)F-'(Xa T)+u’:r(X—X’ t—T)fi(X, T)
Q

]

bt = Ol | g 000 (5D

Q+Q

i

0

Po(x, ) = J j o (x =%, 1= )5 (% D) + vf(X —x, £ — Dm(x) s, 7)] dy de

+j J [UZ(X—XJ—T)E(X,T)+ kii(x—X,st—T)ﬁ(X?T)

0

+op(x—y, t—7)y(yx, D] dy dr+ '[ n(xX—yx, D{(x, 00dy,  (52)

Q4+

4

WWO=J

0

j [P (x—x, 1= 1)s,(t, ©) +pF (x—~ . t = D)m () st 7)) dy de

0

+J J [Pl (x—o, t =) F (1, 7) + Pl (x— o, t—~71) fi(%, 7)
Q

+pi(x—y, t—1)y(x, D)) dyx dr+ J

Q+Q

P00 dL (53)

4

Boi(x, 1) = j

0

J o (x =2, 1= 1)s: (X, T) + ou(x — %, t — D (X)s(x, ©)] dyg dr

+J‘ j lofi(x— % t—T)Fi(¥, T) +°'£1i(x—7(s t—1) fi(X, 7)
Q

0

T ax— . = D)y ] dy dr+ j Ghx—y, D00y (54)

Q+Q

The two equations, (51) and (53), are weakly singular, and are equivalent to a “‘single-layer
method” of the potential theory (Jaswon and Symm, 1977) in which weak singularities of
order Inr for 2-D and 1/r for 3-D problems are distributed. We also note that the domain
integration of the initial condition {(y, 0) is performed for both Q and Q’. As pointed out
by Sharp (1983), the need for integrating in the complementary domain is dependent on
the numerical algorithm adopted. When the time integration in (51)—(54) is carried out in
the convolutional sense (i.e. tracing back to the time origin for solution at any given time),
it can simply be assumed that {(¢,0) = 0 for x e Q’; this approach eliminates the need of
integrating in the complementary domain. If a time stepping scheme is adopted instead,
advancing the solution to the next time level is based on information at the present time,
not at the time origin. In that case, it is necessary to keep track of the evolution of { in both
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Q and @ for the domain integral, which is a serious drawback in terms of computational
effort.

In order to solve mixed boundary value problems, we also need integral expressions
for the boundary ¢, = o,n; and the normal fluid flux g = gn,. While (54) comes handy to
form such a quantity, (52) must be differentiated according to the kinematic condition (9).
This yields the following strong (Cauchy) singular integral equations

t

Brix, 1) = J

0

J lof (x— o, t—D)5 (o, ) + 0l (X — o, =D (1) s (x, Dmy(x) dy de
r

+J J [O'SZ(X—Xa I*T)Fk(x’ T) +o-{j;k(x_x’ t_‘c)ﬁe(Xa T)

0

+ oy (X =y, 1—=1)y(x D, (x) dy dr +J ol (x— 1 DL, Om(x) dy  (55)

Q+Q'

T

Mm0=j

0

J lg5 (x—, t =501, T) + gi(x — %, 1 — D), ()s(x, 1) (x) dy de

+J‘ f [qg(X—X,f"T)F;(X’T)'i‘qz'f}(X—Xat—T)ﬁ(X,T)

0

+g' (x—7, t—0)p(x, D] (x) dy de +J g7 (x— %, DL, On(x)dy,  (56)

Q4+

The four eqns (51), (53), (55) and (56) can now be exploited in a boundary collocation
procedure to determine the unknown distribution densities s; and s.

7. DISPLACEMENT DISCONTINUITY METHOD

In contrast to the stress discontinuity method, we now consider the case where the
boundary traction and the pore pressure for the interior and exterior domain problems are
set equal. The following set of integral equations are then deduced from (39)-(42). (Note
that relations similar to (49) have been used for the adjustment of signs.)

t

J [ofi (x— . 1= D, (0, T) + Pt (X —x, = D)d(y, )] dy de

0

ﬂuk(x5 t) = J

+.[ J [ (x—, =TV F, (¢, D) + 0l (X — 1, t =) fi(x, T)

0

+PEE(x— g, =)y D] dy de + J =y, )0 0 dy (57)

Q4+

1

ﬁvk(xa t) = f

0

j [l (x—x, t— D), (0)di(x, T) +pE (x =%, t—)d(x, 1) dy dz

+ f’ f [(x—o t—OF(, 1) + ol (x—o, t—1) fi(x, 7)
Q

0

+pE(x—o, 1 —7)y(, 7)1 dx dr+J

Q+Q

,p’k"'(x—x,t)C(x,O)dx (58)
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t

mm»=j

0

.f lo5(x =%, t =D, (i, T) +p* (x =y, 1 —1)d(x, 1)) dy dt
T

+ JI f [/ (X~ o, t=DF (L, D)+ 0/ (X~ %, 1= 7) fi(%, 7)
Q

0

+p(x—y, 1 =)y, D) dy dr+ J

Q+-Q

/p’“(x—x, N{(x,0)dy

14

ﬁokl(xa t) = J

0

f [ofi;(X— %, t— ), (N (%, T) + pis (x —, t —)d(x, )] dy dt
T

+j J [U?z/(X—X» t_T)E(x’ T) +U351(X_X, I_T)ﬁ(xa T)

0

+pli(x—y, t—1)7(x, 7)) dy dt +J

p(x—2,0¢(x,0) dy
Q+Q
where

14
d, = dn;, = u;—u;

d= —(q,—q)n

(59)

(60)

(61)

(62)

In the above d is the fluid normal flux discontinuity associated with the surface, dj; is the
displacement discontinuity tensor, and with the presence of a surface, d,; contracts to 4,
the surface displacement discontinuity. The sign convention for the components of the

displacement discontinuity tensor is shown in Fig. 1.

The integral equations can again be cast into a physically more appealing form in

which influence functions of the same kind are distributed :

t

ﬁuk(xs t) = J

0

f B (X — 1, 1= D), Gt 7)1 (= 1 £— ), )] dg e

0

+J J\ [HE(X*L t—‘f)E(X, T)'Hlfi(x“x’ Z_T)f;(X7 T)

+ul (x—y, t—1)y(, D] dy df+f

Q+Q

) u‘lyci(x_X> Z)C(X’ 0) dX

4

0

Poe(x, 1) = '[ j o8 (x —x, £ =D, (0, (x, 1) + i (x =, 1 = 7)d(y, )] dy dr

+ J\t J [U/Ig(X—X, t—T)E(X, T) + kii(x_Xs t_r)ﬁ(xs T)
Q

0

+oi(x—o, t—1)y(x, ] dy dr+f

Q+Q

,vij(x—x, H{(x,0) dx

t

W@0=f

0

j [P —x, t—On (X, V) +p7 (x— o, t —)d(y, T)] dy dt
T

(63)

(64)
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+f f [P/ (x =3, 1= D F(, D) +pl (x =, 1= 1) fi(%, 7)

0

+pi(x =, t—0)p(x, 7)1 dx dr+J ,p“'(x ~% 0{(x,0)dy  (65)

Q+Q

!

Bou(x, 1) = j

0

J lof,(x— o, t— D, (N (o, T) + o(x —y, t—1)d(x, v)] dy dt
r K

\

+J‘ ‘[ [O-llc'}ii(x_xa I—I)E<X7 T) +0'{f1f(X—X, t-T)f;(x’ T)

0

+ou(x—x, t—1)y(x, D] dx dt +j gi(x—x, H{(x,0)dy  (66)

Q+Q

We notice that all the conversions of Green’s functions have been earlier defined in (50),
except for one:

o = pii (67)

This is also proven in Appendix C.

Equations (63) and (65) hence define another indirect method in which solid dis-
placement discontinuity and fluid source singularities are distributed. These equations are
Cauchy singular. This indirect method may be viewed as an equivalent of the “double-layer
method” in potential theory.

In order to solve mixed boundary value problems, (64) and (66) are utilized to obtain
the following hypersingular (Hadamard) equations:

t

ﬂt[(x, t) = J

0

f (o5 (X — %, t—= Dm0 di(X, T) + o5(x — %, 1 = D), Dy (x) dy do

+j f (05X = 1 1= D) P )+ (X — 1 =) fi (s )
Q

0

+o(x—y, t—=1)y(x, Din,(x) dy de +j o (x—x, D (x, O (x) dy  (68)

Q4+

t

Mm0=f

0

J (g (x— %, 1= On,(0) (1, D) + g7 (X =, 1 =), DIna(x) dx de
r

+Jr j [%’;‘(x—xs Z_—T)ij(xa T) +q{jl(x_X7 t—T)f}(Xs T)
Q

0

+q' (x— 2, 1= 1)y(x, Dlndx) dy dr+[ g (=2, 0L Om(x) dy - (69)

Q+Q

By this derivation we can loosely interpret that the constant § takes the same value as it is
in (63)~(66). More rigorously, however, the Hadamard finite-part argument needs to be
invoked to obtain its limiting value. In the numerical implementation, certain regularization
process is needed to evaluate this kind of hypersingular equation (Krishnasamy et al.,
1992).

Equations (63), (65), (68) and (69) now form the basis of a poroelastic displacement
discontinuity method.
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As a final remark, we present an interesting observation. The stress expression of an
instantaneous displacement discontinuity can be obtained from the constitutive equation,

2G
Ukl = G(uzd,/ + ujklz) + 5 umklm aarjpkl
Fi 2 1
= G(0}:;+07.) + 5 Ol — 00O (70)

where isotropy is assumed. In the above equation, the second line is substituted by relations
in (50) and (67). For a continuous displacement discontinuity, (70) can be integrated with
respect to time to give

2G .
Ijkl G(alsz + o—;;(j t) + 6 alkm m aéija-;;c (71)

where we have utilized (29). Equation (71) shows that the continuous displacement dis-
continuity is a combination of a number of singular solutions, including a continuous force
dipole (also known as double force, which is the spatial derivative of a point force), a
quadrapole for 2-D or an hexapole for 3-D (respectively, two and three pairs of mutually
orthogonal double forces), and also an instantaneous fluid source. Such a superposition of
singular solutions, based on physical arguments and the requirement that the final com-
bination contain all the necessary properties, is one of the approaches that has been used
to derive some of the displacement discontinuity solutions (Curran and Carvalho, 1987;
Carvalho, 1990; Carvalho and Curran, 1998). Here its theoretical connection is formally
established.

8. DISLOCATION METHOD

This dislocation method is often used to model linear fracture problems and is a
reduced version of the displacement discontinuity method. In this case, I' represents the
fracture locus, d; is the actual displacement jump due to the opening and sliding of fracture
walls, and d the actual fluid flux jump as the result of fluid injection. For example, for the
geometry of a linear fracture under plane strain conditions in an infinite domain (Fig. 3),
the integral equations can be written as

: PL
6.(x,0) = j J [6%22(x— %, t =D, (X, T) + %221 (x =%, t—T)d (%, T)

04J-L

+oh(x—y, t—0d(x, D)ldydr  (72)

GCn

I
1&1
—1T

€&
€

2L

Fig. 3. A linear fracture in poroelastic medium.
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t 'L
@ '
o.(x,1) = j J [67522 (x =%, t =), (%, 1) + 05221 (x—x, £ —7)d, (1, 7)
0J-L

ol (x—x t=0)d(y, )] dyde  (73)

t "L
p(x, 1) =J J. (P32 (x —x, t—0)d, (%, T) + P51 (x =, t =D (X, T)

+p (x =y, t—d(y, ldxdr (74

in which ¢, and g, are, respectively, the normal and shear stress on the fracture surface, d,
and d, are the normal (mode 1) and shear (mode 2) displacement jumps across the fracture.
These equations are apparently a reduced version of (65) and (68). They have been utilized
for the numerical solution of hydraulic fracture embedded in porous formation, opened by
fluid pressurization (Detournay and Cheng, 1987; Vandamme et al., 1989 ; Renshaw and
Harvey, 1994).

An edge dislocation method, similar to that used in elasticity (Bilby and Eshelby,
1968), can also be devised. For example, performing an integration by parts on (72)
produces the edge dislocation formula

t L
Gn(x’ t) = j J [agiZZZ(x—X’ t'—z)d;(X7 T) + asiZZI (X_Xs l—f)d;(x, T)

0J-L
+ 6512 (-x _Xs [_T)d(X’ T)] dx dT (75)

In the above, d, and d, are the derivatives of d, and d, with respect to . The influence
functions denoted by the superscript ¢ are edge dislocation solutions obtained as

x

050 (X=X, t—1) = J‘ 0% (x =y, 1—1)dy’ (76)

— o0

and so forth. Equation (75) has a singularity of 1/r as compared with 1/#2 in (72), which is
of some numerical advantage. In addition, the stress intensity factor can directly be solved
in the edge dislocation method, which should be more accurate than that determined from
the slope of displacement in the point dislocation method. The poroelastic edge dislocation
method has been numerically implemented (Cheng et al., 1988 ; Detournay and Cheng,
1991).

For curved fracture, an orthonormal coordinate system can be used. A 2-D represen-
tation, in which I' is a curve with a + and a — side, is illustrated in Fig. 1, where u;
corresponds to u, and u;" to u. The normal d, and shear 4, component of the displacement
discontinuity vector are then given by

d, = dnn, (77
d, = dynne; (78)

where ¢;; is the 2-D Levi—Cevita permutation symbol.

9. SYMMETRIC GALERKIN INTEGRAL EQUATIONS

A shortcoming common to the boundary integral equation methods presented so far
is that the coefficient matrix of the discretized, linear solution system is non-symmetric in
contrast to the symmetric coefficient matrices of finite element methods. Since there are
considerable computational advantages to be gained from a symmetric coefficient matrix,
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symmetric, “Galerkin formulations”, mimicking the Galerkin weighted residual for-
mulations of finite elements, have been proposed for boundary integral equations. For
elasticity, the Galerkin BEM has been well expounded (Kane, 1994; Bonnet, 1995).
Recently, Pan and Maier (1997) derived the symmetric Galerkin BEM for poroelasticity.
Based on the Galerkin formulation viewpoint, the Green’s functions in the integral equa-
tions are weighing functions which are chosen, among many other possible weighing
functions. In this section, we investigate the theoretical foundation of the symmetric Galer-
kin integral equation system and unify it with the present family of integral equations.

Equation (51), which is a single layer potential representation of the displacement
vector, is repeated below

3

ﬁui(xe t) = J\

0

j [ (X — %, t =), ) + e (X~ =TI ()s(x, D] dxdr (79)
r

where we have dropped the domain integrals associated with body forces, sources, etc., for
simplicity. Similarly, based on (63), the double layer representation is given as

¢

ﬁui(xa l) = J

0

j [uia(xX =%, =D (X, D+ (x =%, =)Dy, D] dydz  (80)

Here we note that we have performed an integration by parts with respect to time on the
second term in the integrand such that

uo=—- (81)
and following (62),

D= f "ddi = — (oo, (82)

0

is the fluid relative displacement discontinuity. The above two equations, (79) and (80),
can be added to give a mixed-type integral equation

2,314,- = J‘ J [uﬁ(isk + u{/inks*" u,fd;f,nkd, + u{’D] dx dr (83)
r

0

Following the same strategy, and utilizing the single and double layer integral equations of
Sections 6 and 7, three more mixed type integral equations can be constructed

28t = J J [ohisi + Thns +ofn,di + o Dln; dy dt (84)
0 JT
! " . .
2fv = J’ J (w8, + vfin.s + vimd, + v/ Dln, dy dt (35)
oJr
‘ - " . .
2fp = f J (pF's, +pimes + plined, + p" D] dy dt (86)
0 JI

In the above, v = v#,, is the normal fluid relative displacement. These four eqns (83)—(86)
can be put into a matrix form
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di Fi K
ohumn, ohin, ohmn,  aun; d, t
i Fi i li
! Uiy, Uy Wiy U Sk u;
di Fi o ii dydr = 2§ ] &7
oJr Uiy Ul wieh; Uik v
u - ) i
Dy pr p{(lnk P D p J

We notice that the coefficient matrix is symmetric because of the following relations
ofi = Uy, oy = vi, ol = pH ol = o, ull = pf', and v = pf, all of which have been proven
in (50) and (67). Similar to the stress and the displacement discontinuity methods, only
half of the above equations are needed at each collocation node, depending on the type of

boundary conditions (traction vs displacement, and pressure vs flux).

10. SUMMARY AND CONCLUSION

In this paper we have unified the direct and indirect boundary integral equations for
the theory of linear quasi-static anisotropic poroelasticity. The direct integral equations
were derived based on the reciprocity relation. The indirect integral equations were obtained
by summing up the integral representation of the direct method for an interior and an
exterior domain problem. The choices of the boundary conditions led to two methods, a
stress and a displacement discontinuity method. Each of the two methods were expressed
in two forms. One was based on distributing various influence functions of stresses, dis-
placements, etc., created by the same singularity. The other uses the same kind of influence
function as the quantity represented by the integral, yet associated with various kind of
singularities. Through these relations, various connections among Green’s functions were
observed and proved under general anisotropy condition. Two variations of the dis-
placement discontinuity method, a point and an edge dislocation method, were introduced
to model fracture problems. By combining the stress and the displacement discontinuity
equations, an integral equation system whose coefficient matrix is symmetric is formed.
This is similar to the Galerkin formulation in FEM. Finally, a complete listing of all
isotropic Green'’s functions was provided as an Appendix.
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APPENDIX A: DERIVATION OF RECIPROCAL INTEGRAL EQUATIONS

The governing eqns (1)-(5) are not self-adjoint due to the presence of a time derivative term in (5). Following
the derivation of the reciprocal integral equation for the diffusion equation (Morse and Feshbach, 1953), the
second system in (11) is represented by the adjoint system of equations, which involves switching the sign of the
time derivative term in (5). Since the second system is replaced by Green’s functions, a reversal of the field and
source parameters is necessary to restore the physical nature of the Green’s functions. These procedures, adopted
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for the derivation of reciprocal integral equations (Predeleanu, 1968 ; Cheng and Predeleanu, 1987), are often a
source of confusion. In the derivation below, it is demonstrated that such procedures are not necessary.

Another innovative feature of this Appendix is the explicit use of a nucleus of strain which naturally leads to
the introduction of the displacement discontinuity solution. To achieve this, we recognize that the strain field e¥
for a displacement discontinuity consists of two terms, an elastic strain e, and a singularity E;:

e =e,+E; (Al)
The singularity E; will be referred to as a “nucleus of strain”, borrowing an expression coined by Love (1944).
The nucleus of strain introduced as (17) is related to but different from the nuclei of strain introduced by Love
(1944) in elasticity and also from the poroelastic point dilation and point slip derived by Cleary (1977). Its
counterpart in elasticity was presented by Nedelec (1986) and Becache ef al. (1993).

The elastic strain e, that satisfies the constitutive eqns (1) and (2) can be expressed in terms of
(u* +u}) and E usmg the decomposition (Al); hence

o} = Meli—op*— M, E, (A2)
p* = M{*—ayel)+ Mx,E; (A3)

The asterisk superscripts are used to denote the displacement discontinuity solution. Note that when E;; is zero,
the asterisks drop out. When a proper substitution of singularity is made, the asterisks are replaced by the
displacement discontinuity notation, di or de. As no confusion will result, the asterisk superscripts will henceforth
be dropped.

The reciprocity of work principle (11) can now be rewritten as

oV +p D —gVED = g@Pell) 4 pD D gD ED (A4)
to accommodate the introduction of nuclei of strain. First, note that
0,‘-,»“e§f‘ - (o',(,l)u§2))‘,+ufz’F§1' (AS)
where the equilibrium egns (3) have been utilized. Integrating the continuity eqn (5) we obtain
{=0—v,+0Q (A6)

in which {, is the initial value of {.
It can then be shown

p(l)C(Z) — _(p(l)vsvl))J,_bqu}l)v;Z)+Uf_2)f£_l)+P(1)Q(2) +p(l)ci)2) (A7)

where we have utilized Darcy’s law (4), and b, = [k;] ' is the resistivity tensor, or the matrix inverse of the
permeability tensor.

Substituting (A5), (A7) and their counterparts into (A4), and integrating over the problem domain Q and
with respect to time yields:

ffuwmew%wm~wmwm—w%Md
]
+ [FOu? = PP+ [0 =200 - [0 Vp® ~ 0p)
+ED 0~ EP ol 1+ [0V —p D) by o — byg Vi dx de = 0 (A8)

We note that the last group of the integrand can be transformed as follows:

‘ @) P (t—1)
b’](q(l) (2) __ (Z)U;l)) = bij(qgl)v}Z)_q;Z)Ul(_l)) —= b:j |: o ( )(t— )_ a(z ) U(”(T)

oV ()P (t—1)

=p — N A9
bll ar ( )
in which we have utilized the symmetry of 5. Integrating the above we find :
t e (e (f— =t
[} 5, O g = o] =0 (A10)
0 =

where we note v,(0) = 0, following the definition (9). Hence the last part of the integrand of (A8) vanishes. Finally,
(13) is obtained by applying the divergence theorem to the first two parts of (A8).
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APPENDIX B: DERIVATION OF GREEN’S FUNCTIONS FOR ISOTROPIC
POROELASTICITY

In this Appendix, we outline a methodology to derive the solutions of the various singularities presented in
Appendix D. This approach is based on a particular decomposition of the displacement field originally proposed
by Biot (1956). It was first used by Cheng and Liggett (1984a) to derive fundamental solutions (see also Cheng
and Predeleanu (1987), Detournay and Cheng (1987)), and is a more systematic approach than other methods
that have been described in the literature (see, for example, Cleary (1977), Rudnicki (1981, 1987)).

Consistent with the scope of Appendix D, the following discussion is limited to the case of material isotropy.
The governing eqns (A2), (A3) and (4) reduce to:

26 26
0, = 2Ge, + 1_—;5,.,e—a5,.,p—205,}.— 1_—;‘,5,.,5“ (81)
p = M({—0e) + MaE, (B2)
g, =x(p—f) (B3)

Here for convenience we have dropped the asterisk superscripts as shown in (A2) and (A3). The material constants
are the shear modulus G, the Poisson ratio v, the mobility or permeability x, and the Biot modulus M, and the
Biot effective stress coefficient a.

B.1. Biot's decomposition

We shall first ignore the presence of E;, thus the displacement discontinuity solution. It will be separately
discussed below. In that case, the governing equations, (3), (5), (B1)—(B3) can be combined to give the following
field equations in terms of the solid displacement u; and the variation of fluid content { (see, for example,
Detournay and Cheng (1993))

G
Gu,; ;+ mum =oaM{,—F, (B4)
[il4 2y MC
S v =T E (®5)

In the above v, is the undrained Poisson ratio, and the diffusivity (generalized consolidation coefficient) ¢ can be
expressed as

. 2kG (v, —v)(1—v)

(B6)
a?(1—v)(1—=2v)?
Note that v, is not an independent material coefficient as it is related to the other coefficients according to
_ 26—y B7
a?(1—2v,)(1~2v)
We also introduce here the dimensionless coefficient # defined as
a(l—2v)
Il Sl 4 BS
=205y (B3)
The displacement decomposition proposed by Biot (1956) consists in writing
R J LA B9
u=ul+ =9, (B9)
where u? satisfies the undrained Navier equation of elasticity
Gul;+ ¢ = —F, (B10)
ST (1= 2v,) 2l i
and the scalar potential ¢ defined as
Vi = (B11)
is governed by an inhomogeneous diffusion equation
¢ c
6—?“CV2¢=%91—K\92+93 (B12)

The functions g,, g, and g, are such that
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Vg, =F, (B13)
Vig: = kfy, (B14)
Vigs =y (B15)

Here we note that ¢ is determined only to within an arbitrary harmonic function. We also notice these useful
formulae :

16¢ 1
pP=va +g2—;g3 (Bl6)
v, = (—¢+J g3 dt) (B17)
a i
_k_1
(= Poh (B18)

The functions g,, g, and g, provide the entry point for various singularities.

B.2. Irrotational singular solutions

All the singular solutions associated with the fluid (i.e. solutions with a singular term in the continuity
equation or in Darcy’s law) are characterized by F; = 0. Equations (B9) and (B10) show that 4’ = 0 and the
displacement u, can be expressed as the gradient of a potential ¢, hence the reference to the term “irrotational”.
Solutions that fall into this category include instantaneous and continuous fluid source, dipole, fluid body force,
and dilation.

The solution procedure involves assigning proper Dirac delta and Heaviside step functions to f; or y. Through
(B14) or (B15), the corresponding g function is found. Equation (B12) is used to find ¢ and (B9) is used for u,.
Further use of (B16), (B17) and other constitutive eqns (B1)-(B3) leads to the complete set of solutions of
displacement, stress, pressure, flux, etc. We give a quick illustration below.

Take, for example, the continuous source, which corresponds to y = §(x—y)H(r—1). From (B15) we find
that

1
g = %H(z—r) for 2-D

1
= —4H@—1) for3.D (BI9)

Substituting the above into the right-hand-side of (B12), we find the scalar potential ¢* for a unit continuous
source as

7 [(1+&DE (&) 428 Inr—¢ 2 e~ for 2-D

¢ = 16nc

r _ 2, R i
=I6—nc[(2+é 2)erf(:((,’2)~ﬁf e &% for3-D (B20)

where

=— (B21)
Véc(t—1)
We can clearly derive ;° from
wr = o (B22)
K
and p* from
1ag” 1
= — = B23
kot &P (B23)

The rest of the solution then follows from the constitutive equations.
Once the continuous source solution is obtained, other irrotational singular solutions can be found as follows :

o All instantaneous solutions can be found as the time derivative of the continuous solutions [see (26)).
o The fluid dipole solution is by definition the spatial derivative of the source solution (with a minus sign)
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(~)p(‘) — M (B24)
Co ox;

o The fluid dilation solution is the time derivative of the source solution [see (28)].

By observing the relations shown above, we also detect the following connections among influence functions.
In view of the way that f; and y are combined in the field eqns (B4), and the delta functions substituted, the
solution for a unit fluid body force in terms of displacement, stress, pressure, etc., is obtained by multiplying by x
the solution for a dipole of the same orientation

(~) = k(~ Y, (B25)

This however is not true for two expressions, g, and v, as evident from (B3) and (B17).
Observing (B9) and (B17), we find that as long as the singularity is not a total force, a fluid source, or derived
ones such as dipole and dilation, &, and ¢, are related according to

. kG .
o = Fu{} ) (B26)

From (B18), we find that for all irrotational solutions (source, dipole, dilation, fluid body force, instantaneous
and continuous)

i, (B27)

Executing the above procedures, all singular “fluid” solutions can be found. They are presented in Appendix D.

B.3. Total force solution

The continuous point force solution is achieved by the introduction of F;; = §,6(x —x)H(¢— 1) to the right-
hand-side of (B10). Now the solution in (B9) contains a rotational part corresponding to the non-trivial .
Equation (B10) shows that ! is exactly the classical elastic point force solution multiplied by a Heaviside function,
but with the drained Poisson ratio v replaced by the undrained one, v,. The ““time-dependent” component of the
displacement is contained in the potential as

wx—y1—17) = uf(x—pH@E—0) + fx—y, t—1) (B28)

e
xG
An inspection of the definition (B13) and (B14), and the diffusion eqn (B12), reveals that the potential of the total
force ¢ is related to the potential of the fluid force ¢/ :

ne .

= - B2
o = — 29 (B29)
Or, from (B25), it is related to the fluid dipole as:
¢f = ~ Lo (B30)
G
From what we already know about the fluid singular solutions, (B28) can be easily assembled.
Also, based on the definition of { in (B11), we can easily deduce from (B29) and (B30) that
ry = _ My € e B31
¢ T = - 2ol (B31)

B.4A. Displacement discontinuity solution
The governing equations can be assembled into field equations in terms of », and p, instead of »; and { as in
(B4) and (B5) (Detournay and Cheng, 1993),

G 2Gv
Gt + gy =30 = — Frb 26 B+ G5 B (332
2 2 OE,
5';3 —KMV2p+aM%‘;- = My—KkMf, +aM =" (B33)

Here we have retained the presence of E,. For a continuous displacement discontinuity [cf (17)]
Ejy = —3(048,+820,)8(x —)H(1~ 1) (B34)

we find on the right hand side of (B32) and (B33) such singularities
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G . 26

Gu, ; + 1—2v) W= P = — G856 ,(x— )+ 340, (x— ) JH(r—17) — -2 )5k15 (x—y)H(r—1) (B35)
5 0
% —va2p+aM—ai; = —aMSS(x— 1)1 —1) (B36)

We observe through the F, term that the introduction of a singularity 8,;6(x —y)H(t —1) for F; in (B35) creates a
solution of . If we introduce the spatial derivative of a delta function 8,4 (x — x)H(r— 1), a solution ult, results.
Similar argument can be made in (B36) through the source term y such that a u} solution is produced. We then
realize that the displacement discontinuity solution is given by the following combination of solutions:

2Gv
iy = GuiS+ulf) +

I Suthrsm — 0Oyt (B37)

Through the substitution of known relations, we also find
2Gv e
up = G(”la 1+ ug; k) + 5k1umA m XD} (B33)

We realize that this is exactly the constitutive relation. Hence it provides a side proof of the displacement
discontinuity solution (B37). We also notice that (B37) is consistent with (71).

APPENDIX C: RELATIONS AMONG GREEN'S FUNCTIONS

In this Appendix, it is proven that the following relations among Green’s functions, as associated with (50)
and (67), exist :

= pft «n
of = uf €
= pf (€3
ul, = off (C4)
vt = of, ©3)
Pl =0} (Co)

Although these relations can be directly observed from the isotropic solutions as displayed in Appendix D, they
need to be proven for the general anisotropic case. A proof based on the reciprocity principle is given here. First
consider the reciprocal work principle (11), where the two states (1) and (2) are now taken to be contemporary
(i.e. they are occurring at the same time)

ol (X1, 1= DeP (X, =0+ PV (=X, 1= YD (g Xz, 1-7)
= 0P (A —Xp, =D (%1, 1=+ PP =X, 1=V (%1, 1 =1) (CT)
Following the similar procedure that produced (13), but without the integration with time, we obtain

[ etmus—amu)an- | V=t de
r r

Q

(=P [ 7 ) o

Q

- f (Qp® —QWp) dy + f (EPa —EPa)dy =0 (C8)
Q o

where we have ignored the initial condition. Consider Q as a circular (2-D) or spherical (3-D) domain with a
radius R. We shall take limit of R — oc. We note that the first two integrals are performed over the boundary. If
the products in the integrand, a{’u{*’, p'v!?, etc., decay fast enough, say, of order R™* where « > 1 for 2-D and
o > 2 for 3-D cases, the boundary integrals vanish. Hence

[ our—renane | g oo oy
Q’J:

o

_J (Q“’p‘z)—Q(z’p('))dx+'[ (E‘(,j!)o-g?)_El(]?)gl(,j!))dx:() €9
o Q

x

To prove (C1), we substitute in the following singularities and their corresponding influence functions:
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FY = §,8(1—x,)3(t—1) (C10)
0P = §((—x,)0(t—17) (C11)
F? = QW =V = f9 = B = EP =0 €12)
Equation (C9) reduces to
(X, — X3, t~ 1) +pf(xy =X, t—7) = 0 (C13)

Since x, and x, are arbitrary, we can rewrite the above as

wx—x,t—1) = —pf(x—x,1—1) = p'(x—yx,1—1) (C14)

Relation (C1) is thus proven. To demonstrate (C2), we adopt

FY = §,8(0—x,)8(t—1) (C15)
S =8,8(x—x%x,)8(1—1) (C16)
FP = QW= Q® = fih = E) = EP = 0 €17
from which we deduce that
WX =y, 1—1) = v (X~ %, t—1) (C18)
Using in (C9)
f9=08;6(1—x,)6(1—1) (C19)
0% = d(x—x2)8(t—71) (C20)
FU=FP =0 =f® D = EP =0 (€21
(C3) can readily be proven
ix—y, t—1) = pi(x—y%, t—1) (C22)
Also, selecting
Eff = —3(0udy+8,0,)0 (X —X)8(1—7) (C23)

and alternately assigning the delta function to F{?, f¥ and 0, the remaining three relations in (C4)—(C6) can
be demonstrated.

Equations (C1)—(C6) are six fundamental relations that cannot be proven by casual observation. Other
relations contained in (50) and (67) can be obtained from (C1)—-(Cé6) by manipulating the conversion rules shown
as (26)—(30).

APPENDIX D: TABLE OF GREEN’S FUNCTIONS

A comprehensive list of Green’s functions for quasi-static isotropic poroelasticity is given below. We utilize
the following notations

r=|x—ql (D1)
o xX,—Y
AT (02
e — (D3)

Jac(t—1)

and use erf and erfc, respectively, to denote error function and complementary error function, while E, is the
exponential integral.
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D.1. Continuous source
y=46(x—H(—1)

2-D
c__n 5 1—e?
I[; _SﬂGKrr" [El(é )+ 52
. 1 J—e
o = o [(5.',--2’.@) 7 —6,E, (52):]
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= 4— — ==
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e
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D.2. Instantaneous source
7= 6(x—)8(t—1)

2-D

. ne r; _g Fe e
- Liqg_ = pfc = 4ff
' 2nGr r( )= =

g nel 2 2
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3-D
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D.3. Continuous dipole
Y= —o(x—y) H(—1)
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D.A. Instantaneous dipole
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D.5. Continuous fluid dilatation
@ =o(x—H(—1)

2-D, 3-D

A. H.-D. Cheng and E. Detournay

(uf, o, P, 0 qf L) =l o3, P70 g7, )

D.6. Instantaneous fluid dilatation
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D.7. Continuous fluid force
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